GER-3658D - SPEEDTRONIC Mark V Gas Turbine Control System
نویسندگان
چکیده
INTRODUCTION The SPEEDTRONIC Mark V Gas Turbine Control System is the latest derivative in the highly successful SPEEDTRONIC series. Preceding systems were based on automated turbine control, protection and sequencing techniques dating back to the late 1940s, and have grown and developed with the available technology. Implementation of electronic turbine control, protection and sequencing originated with the Mark I system in 1968. The Mark V system is a digital implementation of the turbine automation techniques learned and refined in more than 40 years of successful experience, over 80% of which has been through the use of electronic control technology. The SPEEDTRONIC Mark V Gas Turbine Control System employs current state-of-the-art technology, including triple-redundant 16-bit microprocessor controllers, two-out-of-three voting redundancy on critical control and protection parameters and Software-Implemented Fault Tolerance (SIFT). Critical control and protection sensors are triple redundant and voted by all three control processors. System output signals are voted at the contact level for critical solenoids, at the logic level for the remaining contact outputs and at three coil servo valves for analog control signals, thus maximizing both protective and running reliability. An independent protective module provides triple redundant hardwired detection and shutdown on overspeed along with detecting flame. This module also synchronizes the turbine generator to the power system. Synchronization is backed up by a check function in the three control processors. The Mark V Control System is designed to fulfill all gas turbine control requirements. These include control of liquid, gas or both fuels in accordance with the requirements of the speed, load control under part-load conditions, temperature control under maximum capability conditions or during startup conditions. In addition, inlet guide vanes and water or steam injection are controlled to meet emissions and operating requirements. If emissions control uses Dry Low NOx techniques, fuel staging and combustion mode are controlled by the Mark V system, which also monitors the process. Sequencing of the auxiliaries to allow fully automated startup, shutdown and cooldown are also handled by the Mark V Control System. Turbine protection against adverse operating situations and annunciation of abnormal conditions are incorporated into the basic system. The operator interface consists of a color graphic monitor and keyboard to provide feedback regarding current operating conditions. Input commands from the operator are entered using a cursor positioning device. An arm/execute sequence is used to prevent inadvertent turbine operation. Communication between the operator interface and the turbine control is through the Common Data Processor, or , to the three control processors called , and . The operator interface also handles communication functions with remote and external devices. An optional arrangement, using a redundant operator interface, is available for those applications where integrity of the external data link is considered essential to continued plant operations. SIFT technology protects against module failure and propagation of data errors. A panel mounted back-up operator display, directly connected to the control processors, allows continued gas turbine operation in the unlikely event of a failure of the primary operator interface or the module. Built-in diagnostics for troubleshooting purposes are extensive and include “power-up,” background and manually initiated diagnostic routines capable of identifying both control panel and sensor faults. These faults are identified down to the board level for the panel and to the circuit level for the sensor or actuator components. The ability for on-line replacement of boards is built into the panel design and is available for those turbine sensors where physical access and system isolation are feasible. Set points, tuning parameters and control constants are adjustable during operation using a security password system to prevent unauthorized access. Minor modifications to sequencing and the addition of relatively simple algorithms can be SPEEDTRONICTM MARK V GAS TURBINE CONTROL SYSTEM
منابع مشابه
Multivariable Model Predictive Control for a Gas Turbine Power Plant
In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet guide vanes position. A nonlinear model is introduced using conventional mathematical models and ARX identification procedure as gas turbine plant ...
متن کاملOptimization of droop setting using Genetic Algorithm for Speedtronic Governor controlled Heavy Duty Gas Turbine Power Plants
Biomass is identified as one of the major renewable energy sources for electrical power generation. Heavy duty gas turbine engines are preferred for clean and efficient power generation. An extensive literature survey reveals that the governor droop setting of the heavy duty gas turbines varies from 2 percentage to 10 percentage. But it needs to be optimized for analyzing the dynamic response o...
متن کاملThermodynamic analysis of three combined power and refrigeration Systems based on a demand
Three combined power and refrigeration system are introduced to compare and analyze for a defined demand and same fuel consumption based on thermodynamic parameters in a 24 hours period. Gas turbine and/or steam turbine are used for power generation and also ejector refrigeration cycle is used to produce cooling. These three systems are named as GER, SER and GSER. The results of three systems a...
متن کاملConstrained Model Predictive Control of Low-power Industrial Gas Turbine
Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...
متن کامل